Solved

Determine If the Series Converges or Diverges n=1(1n+11n+3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt { n + 1 } } - \frac { 1 } { \sqrt { n + 3 } } \right)

Question 48

Multiple Choice

Determine if the series converges or diverges. If the series converges, find its sum.
- n=1(1n+11n+3) \sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt { n + 1 } } - \frac { 1 } { \sqrt { n + 3 } } \right)


A) converges; 13+12\frac { 1 } { \sqrt { 3 } } + \frac { 1 } { 2 }
B) diverges
C) converges; 13+16\frac { 1 } { \sqrt { 3 } } + \frac { 1 } { \sqrt { 6 } }
D) converges; 12+13\frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 3 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions