Solved

Use the Discriminant to Classify the Graph; Then Use the Quadratic

Question 1

Multiple Choice

Use the discriminant to classify the graph; then use the quadratic formula to solve for yy .
3x223xy+y2183x+30y+36=03 x ^ { 2 } - 2 \sqrt { 3 } x y + y ^ { 2 } - 18 \sqrt { 3 } x + 30 y + 36 = 0


A) ellipse; y=15+3x±123x+189y = - 15 + \sqrt { 3 } x \pm \sqrt { 12 \sqrt { 3 } x + 189 }
B) ellipse; y=15+3x±123x+189y = - 15 + \sqrt { 3 } x \pm \sqrt { - 12 \sqrt { 3 } x + 189 }
C) parabola; y=15+3x±123x+189y = - 15 + \sqrt { 3 } x \pm \sqrt { - 12 \sqrt { 3 } x + 189 }


D) parabola; y=3x±123x+189y = \sqrt { 3 } x \pm \sqrt { - 12 \sqrt { 3 } x + 189 }

E) hyperbola; y=3x±123x+189y = \sqrt { 3 } x \pm \sqrt { - 12 \sqrt { 3 } x + 189 }

Correct Answer:

verifed

Verified

Related Questions