Solved

Solve the Differential Equation yt=xesinxycosxy ^ { t } = x e ^ { - \sin x } - y \cos x

Question 32

Multiple Choice

Solve the differential equation. yt=xesinxycosxy ^ { t } = x e ^ { - \sin x } - y \cos x


A) y=(12x2+C) esinxy = \left( \frac { 1 } { 2 } x ^ { 2 } + C \right) e ^ { - \sin x }
B) y=12x+Cecosxy = \frac { 1 } { 2 } x + C e ^ { - \cos x }
C) y=Cesinxy = C e ^ { - s i n } x
D) y=esinx+Cxy = e ^ { - \sin x } + C x
E) y=(2x2+C) ersinxy = \left( 2 x ^ { 2 } + C \right) e ^ { - r } \sin x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions