Solved

Calculate g(x)g ( x ) , Where g=f1g = f ^ { - 1 }

Question 9

Multiple Choice

Calculate g(x) g ( x ) , where g=f1g = f ^ { - 1 } . State the domain and range of gg . Calculate g(a) g ^ { \prime } ( a )
f(x) =1x3,x>3;a=2f ( x ) = \frac { 1 } { x - 3 } , x > 3 ; a = 2


A) g(x) =3+1x,g(2) =14g ( x ) = 3 + \frac { 1 } { x } , g ^ { \prime } ( 2 ) = - \frac { 1 } { 4 } , domain =(0,) = ( 0 , \infty ) , range =(3,) = ( 3 , \infty )
B) g(x) =4+1x,g(2) =14g ( x ) = 4 + \frac { 1 } { x } , g ^ { \prime } ( 2 ) = - \frac { 1 } { 4 } , domain =(0,) = ( 0 , \infty ) , range =(4,) = ( 4 , \infty )
C) g(x) =2+1x,g(2) =12g ( x ) = 2 + \frac { 1 } { x } , g ^ { \prime } ( 2 ) = - \frac { 1 } { 2 } , domain =(0,) = ( 0 , \infty ) , range =(3,) = ( 3 , \infty )
D) g(x) =4+12x,g(2) =18g ( x ) = 4 + \frac { 1 } { 2 x } , g ^ { \prime } ( 2 ) = - \frac { 1 } { 8 } , domain =(0,) = ( 0 , \infty ) , range =(3,) = ( 3 , \infty )
E) g(x) =1+3x,g(2) =34g ( x ) = 1 + \frac { 3 } { x } , g ^ { \prime } ( 2 ) = - \frac { 3 } { 4 } , domain =(0,) = ( 0 , \infty ) , range =(1,) = ( 1 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions