Solved

Select the Graph of the Polar Equation Using Symmetry, Zeros r2=9sinθr ^ { 2 } = 9 \sin \theta

Question 27

Multiple Choice

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points. r2=9sinθr ^ { 2 } = 9 \sin \theta


A) r=3sinθr = 3 \sqrt { \sin \theta }
r=3sinθr = - 3 \sqrt { \sin \theta }
0θπ0 \leq \theta \leq \pi
 Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r ^ { 2 } = 9 \sin \theta   A)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     B)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi    C)   \begin{array} { l }  r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     D)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     E)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi

B) r=3sinθr = 3 \sqrt { \sin \theta }
r=3sinθr = - 3 \sqrt { \sin \theta }
0θπ0 \leq \theta \leq \pi
 Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r ^ { 2 } = 9 \sin \theta   A)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     B)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi    C)   \begin{array} { l }  r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     D)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     E)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi
C)
r=3sinθr=3sinθ0θπ\begin{array} { l } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}
 Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r ^ { 2 } = 9 \sin \theta   A)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     B)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi    C)   \begin{array} { l }  r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     D)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     E)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi

D) r=3sinθr = 3 \sqrt { \sin \theta }
r=3sinθr = - 3 \sqrt { \sin \theta }
0θπ0 \leq \theta \leq \pi
 Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r ^ { 2 } = 9 \sin \theta   A)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     B)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi    C)   \begin{array} { l }  r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     D)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     E)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi

E) r=3sinθr = 3 \sqrt { \sin \theta }
r=3sinθr = - 3 \sqrt { \sin \theta }
0θπ0 \leq \theta \leq \pi
 Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r ^ { 2 } = 9 \sin \theta   A)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     B)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi    C)   \begin{array} { l }  r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     D)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi     E)   r = 3 \sqrt { \sin \theta }   r = - 3 \sqrt { \sin \theta }   0 \leq \theta \leq \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions