Solved

Select the Parametric Equations Matching with the Following Graph x=13(cosθ+θsinθ),y=13(sinθθcosθ)x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta ) , y = \frac { 1 } { 3 } ( \sin \theta - \theta \cos \theta )

Question 47

Multiple Choice

Select the parametric equations matching with the following graph.  Select the parametric equations matching with the following graph.    A)  Involute of circle:  x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta )  , y = \frac { 1 } { 3 } ( \sin \theta - \theta \cos \theta )   B)  Involute of circle:  x = \frac { 1 } { 3 } ( \cos \theta - \theta \sin \theta )  , y = \frac { 1 } { 3 } ( \sin \theta + \cos \theta )   C)  Involute of circle:  x = \frac { 1 } { 3 } ( \cos \theta - \theta \sin \theta )  , y = \frac { 1 } { 3 } ( \sin \theta - \theta \cos \theta )   D)  Involute of circle:  x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta )  , y = \frac { 1 } { 3 } ( \sin \theta + \theta \cos \theta )   E)  Involute of circle:  x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta )  , y = \frac { 1 } { 3 } ( \sin \theta - \cos \theta )


A)
Involute of circle: x=13(cosθ+θsinθ) ,y=13(sinθθcosθ) x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta ) , y = \frac { 1 } { 3 } ( \sin \theta - \theta \cos \theta )
B)
Involute of circle: x=13(cosθθsinθ) ,y=13(sinθ+cosθ) x = \frac { 1 } { 3 } ( \cos \theta - \theta \sin \theta ) , y = \frac { 1 } { 3 } ( \sin \theta + \cos \theta )
C)
Involute of circle: x=13(cosθθsinθ) ,y=13(sinθθcosθ) x = \frac { 1 } { 3 } ( \cos \theta - \theta \sin \theta ) , y = \frac { 1 } { 3 } ( \sin \theta - \theta \cos \theta )
D) Involute of circle: x=13(cosθ+θsinθ) ,y=13(sinθ+θcosθ) x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta ) , y = \frac { 1 } { 3 } ( \sin \theta + \theta \cos \theta )
E)
Involute of circle: x=13(cosθ+θsinθ) ,y=13(sinθcosθ) x = \frac { 1 } { 3 } ( \cos \theta + \theta \sin \theta ) , y = \frac { 1 } { 3 } ( \sin \theta - \cos \theta )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions