menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Multivariable Calculus International
  4. Exam
    Exam 4: Applications of Differentiation
  5. Question
    Evaluate the Integral by Making the Given Substitution\[\int x ^ { 2 } \sqrt { x ^ { 3 } + 2 } d x , \quad u = x ^ { 3 } + 2\]
Solved

Evaluate the Integral by Making the Given Substitution ∫x2x3+2dx,u=x3+2\int x ^ { 2 } \sqrt { x ^ { 3 } + 2 } d x , \quad u = x ^ { 3 } + 2∫x2x3+2​dx,u=x3+2

Question 10

Question 10

Short Answer

Evaluate the integral by making the given substitution.
∫x2x3+2dx,u=x3+2\int x ^ { 2 } \sqrt { x ^ { 3 } + 2 } d x , \quad u = x ^ { 3 } + 2∫x2x3+2​dx,u=x3+2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q5: Use the definition of area to

Q6: Find the integral.<br> <span class="ql-formula" data-value="\int

Q7: Evaluate the integral <span class="ql-formula"

Q8: Evaluate the integral.<br> <span class="ql-formula" data-value="\int

Q9: Find the integral using the indicated

Q11: The acceleration function (in <span

Q12: Find the indefinite integral.<br> <span class="ql-formula"

Q13: Find the derivative of the function.<br>

Q14: Approximate the area under the curve

Q15: Evaluate the integral if it exists.<br>

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines