Solved

Find an Equation of the Tangent Line to the Curve y=8arccos(x2)y = 8 \arccos \left( \frac { x } { 2 } \right)

Question 42

Multiple Choice

Find an equation of the tangent line to the curve y=8arccos(x2) y = 8 \arccos \left( \frac { x } { 2 } \right) at the point (1,π) ( 1 , \pi ) .


A) y=83x+6π83y = \frac { \sqrt { 8 } } { 3 } x + 6 \pi - \frac { \sqrt { 8 } } { 3 }
B) y=38x+π+638y = - \frac { \sqrt { 3 } } { 8 } x + \pi + 6 \frac { \sqrt { 3 } } { 8 }
C)
y=83x+π+83y = - \frac { 8 } { \sqrt { 3 } } x + \pi + \frac { 8 } { \sqrt { 3 } }
D)
y=83x+3π83y = \frac { 8 } { \sqrt { 3 } } x + 3 \pi - \frac { 8 } { \sqrt { 3 } }
E)
y=38x+π638y = \frac { \sqrt { 3 } } { 8 } x + \pi - 6 \frac { \sqrt { 3 } } { 8 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions