Solved

Find the Maclaurin Series For f(x)f ( x ) Using the Definition of the Maclaurin Series

Question 103

Multiple Choice

Find the Maclaurin series for f(x) f ( x ) using the definition of the Maclaurin series.
f(x) =xcos(4x) f ( x ) = x \cos ( 4 x )


A) n=0(1) n4nx2n+1(2n) !\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } 4 ^ { n } x ^ { 2 n + 1 } } { ( 2 n ) ! }
B)
n=0(1) n42nx2n+1n!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } 4 ^ { 2 n } x ^ { 2 n + 1 } } { n ! }
C)
n=0(1) n42nx2n(2n) !\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } 4 ^ { 2 n } x ^ { 2 n } } { ( 2 n ) ! }
D)
n=0(1) n42nx2n+1(2n) !\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } 4 ^ { 2 n } x ^ { 2 n + 1 } } { ( 2 n ) ! }
E)
n=0(1) n+142nx2n+1(2n) !\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } 4 ^ { 2 n } x ^ { 2 n + 1 } } { ( 2 n ) ! }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions