Solved

Find the Radius of Convergence and the Interval of Convergence n=13693n4710(3n+1)x2n+1\sum _ { n = 1 } ^ { \infty } \frac { 3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n } { 4 \cdot 7 \cdot 10 \cdots \cdot ( 3 n + 1 ) } x ^ { 2 n + 1 }

Question 99

Multiple Choice

Find the radius of convergence and the interval of convergence of the power series. ]
Select the correct answer.
n=13693n4710(3n+1) x2n+1\sum _ { n = 1 } ^ { \infty } \frac { 3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n } { 4 \cdot 7 \cdot 10 \cdots \cdot ( 3 n + 1 ) } x ^ { 2 n + 1 }


A) R=,I=(,) R = \infty , I = ( - \infty , \infty )
B) R=1,I=(1,1) R = 1 , I = ( - 1,1 )
C) R=0,I={0}R = 0 , I = \{ 0 \}
D) R=1,I=[1,1]R = 1 , I = [ - 1,1 ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions