Solved

The Torsion of a Curve Defined By r(t)\mathbf { r } ( t )

Question 18

Multiple Choice

The torsion of a curve defined by r(t) \mathbf { r } ( t ) is given by
τ=(rt×rtt) rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ {ttt } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { t t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t) =cos5ti+sin5tj+4tkr ( t ) = \cos 5 t \mathbf { i } + \sin 5 t \mathbf { j } + 4 t \mathbf { k } .


A) 2141\frac { 21 } { 41 }
B) 941\frac { 9 } { 41 }
C) 2041\frac { 20 } { 41 }
D) 8041\frac { 80 } { 41 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions