Solved

Find a Vector Function That Represents the Curve of Intersection x2+7y2+7z2=49x ^ { 2 } + 7 y ^ { 2 } + 7 z ^ { 2 } = 49

Question 14

Multiple Choice

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+7y2+7z2=49x ^ { 2 } + 7 y ^ { 2 } + 7 z ^ { 2 } = 49 and the parabolic cylinder y=x2y = x ^ { 2 } .


A) r(t) =ti+t4j+49t2+7t7k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 4 } \mathbf { j } + \sqrt { \frac { 49 - t ^ { 2 } + 7 t } { 7 } } \mathbf { k }
B) r(t) =ti+t2j+49+t27t47k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 49 + t ^ { 2 } - 7 t ^ { 4 } } { 7 } } \mathbf { k }
C) r(t) =ti+t2j+49t27t7kr ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 49 - t ^ { 2 } - 7 t } { 7 } } \mathbf { k }
D) r(t) =ti+t2j+7t27t47k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 7 - t ^ { 2 } - 7 t ^ { 4 } } { 7 } } \mathbf { k }
E) r(t) =tit2j49t27t7k\mathbf { r } ( t ) = t \mathbf { i } - t ^ { 2 } \mathbf { j } - \sqrt { \frac { 49 - t ^ { 2 } - 7 t } { 7 } } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions