Solved

The Curvature of the Curve Given by the Vector Function rr

Question 120

Multiple Choice

The curvature of the curve given by the vector function rr is
k(t) =rt(t) ×rtt(t) rt(t) 3k ( t ) = \frac { \left| \mathbf { r } ^ { t } ( t ) \times \mathbf { r } ^ { tt } ( t ) \right| } { \left| \mathbf { r } ^ {t } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t) =(19t,et,et}\mathbf { r } ( t ) = \left( \sqrt { 19 } t , e ^ { t } , e ^ { - t } \right\} at the point (0,1,1) ( 0,1,1 ) .


A) 21\sqrt { 21 }
B) 221\frac { \sqrt { 2 } } { 21 }
C) 21221 \sqrt { 2 }
D) 212\frac { 21 } { \sqrt { 2 } }
E) 2121\frac { \sqrt { 21 } } { 21 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions