Solved

The Torsion of a Curve Defined By r(t)\mathbf { r } ( t )

Question 69

Multiple Choice

The torsion of a curve defined by r(t) \mathbf { r } ( t ) is given by
τ=(rt×rtt) rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ {tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ {t } \times \mathbf { r } ^ {t t } \right| ^ { 2 } }
Find the torsion of the curve defined by r(t) =cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .


A) 2729\frac { 27 } { 29 }
B) 1029\frac { 10 } { 29 }
C) 5029\frac { 50 } { 29 }
D) 729\frac { 7 } { 29 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions