menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Multivariable Calculus International
  4. Exam
    Exam 13: Vector Functions
  5. Question
    \[\text { Find the unit tangent vector } \mathrm { T } ( t ) \text { for } \mathbf { r } ( t ) = 4 t \mathbf { i } + 2 t \mathbf { j } + 4 t \mathbf { k } \text { at } t = 2 \text {. }\]
Solved

Question 12

Question 12

Short Answer

 Find the unit tangent vector T(t) for r(t)=4ti+2tj+4tk at t=2. \text { Find the unit tangent vector } \mathrm { T } ( t ) \text { for } \mathbf { r } ( t ) = 4 t \mathbf { i } + 2 t \mathbf { j } + 4 t \mathbf { k } \text { at } t = 2 \text {. } Find the unit tangent vector T(t) for r(t)=4ti+2tj+4tk at t=2. 

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q7: Find the scalar tangential and normal

Q8: A particle moves with position function

Q9: <span class="ql-formula" data-value="\text { If } \mathbf

Q10: Find a vector function that represents

Q11: Find the scalar tangential and normal

Q13: Given <span class="ql-formula" data-value="\mathbf {

Q14: Find a vector function that represents

Q15: Find the length of the curve

Q16: If <span class="ql-formula" data-value="\mathbf {

Q17: <span class="ql-formula" data-value="\text { Find } r

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines