Solved

Use the Equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } }

Question 64

Short Answer

Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } .
cos(x8y)=xe4y\cos ( x - 8 y ) = x e ^ { 4 y }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions