Solved

Find the Correct Identity, If ff Is a Scalar Field F\mathbf { F }

Question 108

Multiple Choice

Find the correct identity, if ff is a scalar field, F\mathbf { F } and G\mathbf { G } are vector fields.


A) div(fF) =fdiv(F) +Ff\operatorname { div } ( f \mathbf { F } ) = f \operatorname { div } ( \mathbf { F } ) + \mathbf { F } \cdot \nabla f
B) curl(fF) =fdiv(F) +Ff\quad \operatorname { curl } ( f \mathbf { F } ) = f \operatorname { div } ( \mathbf { F } ) + \mathbf { F } \cdot \nabla f
C) div(fF) =fcurl(F) +(f) ×F\operatorname { div } ( f \mathbf { F } ) = f \operatorname { curl } ( \mathbf { F } ) + ( \nabla f ) \times \mathbf { F }
D) None of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions