Solved

Suppose a Spring Has Mass MM And Spring Constant kk And Let ω=k/M\omega = \sqrt { k / M }

Question 70

Multiple Choice

Suppose a spring has mass MM and spring constant kk and let ω=k/M\omega = \sqrt { k / M } . Suppose that the damping constant is so small that the damping force is negligible. If an external force F(t) =4F0cos(ωt) F ( t ) = 4 F _ { 0 } \cos ( \omega t ) is applied (the applied frequency equals the natural frequency) , use the method of undetermined coefficients to find the equation that describes the motion of the mass.


A)
x(t) =c1cos(ωt) +c2sin(ωt) +F0eωt2Mωx ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { F _ { 0 } e ^ { - \omega t } } { 2 M \omega }
B)
x(t) =c1cos(ωt) +c2sin(ωt) +2F0tMωsin(ωt) x ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { 2 F _ { 0 } t } { M \omega } \sin ( \omega t )
C)
x(t) =c1cos(ωt) +c2sin(ωt) +F0t22Mωsin(ωt) x ( t ) = c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) + \frac { F _ { 0 } t ^ { - 2 } } { 2 M \omega } \sin ( \omega t )
D)
x(t) =F0t2Mω(c1cos(ωt) +c2sin(ωt) ) x ( t ) = \frac { F _ { 0 } t } { 2 M \omega } \left( c _ { 1 } \cos ( \omega t ) + c _ { 2 } \sin ( \omega t ) \right)
E)
x(t) =F0t22Mωcos(ωt) x ( t ) = \frac { F _ { 0 } t ^ { 2 } } { 2 M \omega } \cos ( \omega t )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions