Solved

The Solution of the Initial-Value Problem x2ytt+xyt+x2y=0,y(0)=1,yt(0)=0x ^ { 2 } y ^ { tt } + x y ^ {t } + x ^ { 2 } y = 0 , y ( 0 ) = 1 , y ^ { t } ( 0 ) = 0

Question 71

Multiple Choice

The solution of the initial-value problem x2ytt+xyt+x2y=0,y(0) =1,yt(0) =0x ^ { 2 } y ^ { tt } + x y ^ {t } + x ^ { 2 } y = 0 , y ( 0 ) = 1 , y ^ { t } ( 0 ) = 0 is called a Bessel function of order 0 . Solve the initial - value problem to find a power series expansion for the Bessel function.


A)
y(x) =n=0(1) n+1nx2n122n1(n!) 2y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } \frac { n x ^ { 2 n - 1 } } { 2 ^ { 2 n - 1 } ( n ! ) ^ { 2 } }
B)
y(x) =n=0(1) nxn2n(2n!) y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { n } } { 2 ^ { n } ( 2 n ! ) }
C)
y(x) =n=0(1) nx2n22n(n!) 2y ( x ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { 2 ^ { 2 n } ( n ! ) ^ { 2 } }
D)
y(x) =2x+n=0(1) nx2n(n!) 2y ( x ) = 2 ^ { x } + \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { ( n ! ) ^ { 2 } }
E)
y(x) =x+n=0(1) nx2n22n(n!) 2y ( x ) = x + \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n } } { 2 ^ { 2 n } ( n ! ) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions