Solved

Use Power Series to Solve the Differential Equation ytt+x2y=0,y(0)=6,yt(0)=0y ^ { tt } + x ^ { 2 } y = 0 , y ( 0 ) = 6 , y ^ { t } ( 0 ) = 0

Question 95

Multiple Choice

Use power series to solve the differential equation. Select the correct answer.
ytt+x2y=0,y(0) =6,yt(0) =0y ^ { tt } + x ^ { 2 } y = 0 , y ( 0 ) = 6 , y ^ { t } ( 0 ) = 0


A)
y(x) =6n=1(1) nx4n4n(4n1) (4n4) (4n5) 43y ( x ) = 6 - \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
B)
y(x) =n=1(1) n6x4n4n(4n1) (4n4) (4n5) 43y ( x ) = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { 6 x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
C)
y(x) =6+n=1(1) n6x4n4n(4n1) (4n4) (4n5) 43y ( x ) = 6 + \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { 6 x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
D)
y(x) =6+n=1(1) nx4n4n(4n1) (4n4) (4n5) 43y ( x ) = - 6 + \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }
E)
y(x) =n=1(1) nx4n4n(4n1) (4n4) (4n5) 43y ( x ) = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 4 n } } { 4 n ( 4 n - 1 ) \cdot ( 4 n - 4 ) ( 4 n - 5 ) \cdots 4 \cdot 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions