Solved

Find All Solutions Of 2sinx2=02 \sin x - \sqrt { 2 } = 0

Question 68

Multiple Choice

Find all solutions of 2sinx2=02 \sin x - \sqrt { 2 } = 0


A) x=π4x = \frac { \pi } { 4 } and x=3π4x = \frac { 3 \pi } { 4 }

B) x=π6+2kπx = \frac { \pi } { 6 } + 2 k \pi and x=π2+2kπ,k integer x = \frac { \pi } { 2 } + 2 k \pi , k \in \text { integer }

C) x=π3+2kπx = \frac { \pi } { 3 } + 2 k \pi and x=π2+2kπ,k integer x = \frac { \pi } { 2 } + 2 k \pi , k \in \text { integer }

D) x=π2 and x=3π2x = \frac { \pi } { 2 } \text { and } x = \frac { 3 \pi } { 2 }

E) x=π4+2kπx = \frac { \pi } { 4 } + 2 k \pi and x=3π4+2kπ,k integer x = \frac { 3 \pi } { 4 } + 2 k \pi , k \in \text { integer }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions