Solved

Solve the System of Equations {x+3y2z=12x+4y+z=42x+6yz=2\left\{ \begin{array} { r } x + 3 y - 2 z = 1 \\2 x + 4 y + z = 4 \\2 x + 6 y - z = 2\end{array} \right.

Question 3

Multiple Choice

Solve the system of equations {x+3y2z=12x+4y+z=42x+6yz=2\left\{ \begin{array} { r } x + 3 y - 2 z = 1 \\2 x + 4 y + z = 4 \\2 x + 6 y - z = 2\end{array} \right. by converting to a matrix equation and using its inverse coefficient matrix [333211623123623013]\left[ \begin{array} { c c c } \frac { 3 } { 3 } & \frac { 3 } { 2 } & - \frac { 11 } { 6 } \\- \frac { 2 } { 3 } & - \frac { 1 } { 2 } & \frac { 3 } { 6 } \\- \frac { 2 } { 3 } & 0 & \frac { 1 } { 3 }\end{array} \right]


A) (14,3,0) ( - 14 , - 3,0 )
B) (2,3,0) ( 2,3,0 )
C) (8,3,0) ( - 8,3,0 )
D) (8,0,1) ( - 8,0,1 )
E) (6,3,0) ( - 6 , - 3,0 )

Correct Answer:

verifed

Verified

Related Questions