Solved

Find the Four Second Partial Derivatives z=x2+8xy+6y2z = x ^ { 2 } + 8 x y + 6 y ^ { 2 }

Question 82

Multiple Choice

Find the four second partial derivatives. Observe that the second mixed partials are equal. z=x2+8xy+6y2z = x ^ { 2 } + 8 x y + 6 y ^ { 2 }


A) 2zx2=2,2zy2=6,2zxy=2zyx=0\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 2 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 6 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 0
B) 2zx2=0,2zy2=6,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 6 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
C) 2zx2=2,2zy2=12,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 2 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 12 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
D) 2zx2=0,2zy2=0,2zxy=2zyx=8\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 8
E) 2zx2=0,2zy2=0,2zxy=2zyx=0\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial y ^ { 2 } } = 0 , \frac { \partial ^ { 2 } z } { \partial x \partial y } = \frac { \partial ^ { 2 } z } { \partial y \partial x } = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions