Solved

Use Lagrange Multipliers to Find the Given Extremum x,y,x , y,

Question 23

Multiple Choice

Use Lagrange multipliers to find the given extremum. In each case, assume that x,y,x , y, and zz are positive. Maximize f(x,y,z) =x+y+zf ( x , y , z ) = x + y + z Constraints x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1


A) f(23,23,23) =2f \left( \frac { \sqrt { 2 } } { 3 } , \frac { \sqrt { 2 } } { 3 } , \frac { \sqrt { 2 } } { 3 } \right) = \sqrt { 2 }
B) f(53,53,53) =5f \left( \frac { \sqrt { 5 } } { 3 } , \frac { \sqrt { 5 } } { 3 } , \frac { \sqrt { 5 } } { 3 } \right) = \sqrt { 5 }
C) f(33,33,33) =3f \left( \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right) = \sqrt { 3 }
D) f(3,3,3) =33f ( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } ) = 3 \sqrt { 3 }
E) f(13,13,13) =3f \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right) = \sqrt { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions