Solved

A Survey of High School Seniors from a Certain School f(x)=113.52πe(x700)2/364.5f ( x ) = \frac { 1 } { 13.5 \sqrt { 2 \pi } } e ^ { - ( x - 700 ) ^ { 2 } /3 64.5 }

Question 69

Multiple Choice

A survey of high school seniors from a certain school district who took the SAT has determined that the mean score on the mathematics portion was 700 with a standard deviation of 13.5. By a normal probability density function the data can be modeled as f(x) =113.52πe(x700) 2/364.5f ( x ) = \frac { 1 } { 13.5 \sqrt { 2 \pi } } e ^ { - ( x - 700 ) ^ { 2 } /3 64.5 } . Find the derivative of the model.


A) f(x) =22(x700) e(x700) 2/182.254,921πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }
B) f(x) =22(x700) e(x700) 2/364.59,842πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
C) f(x) =2(x700) e(x700) 2/364.54,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 4,921 \sqrt { \pi } }
D) f(x) =2(x700) e(x700) 2/364.59,842πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
E) f(x) =2(x700) e(x70) 2/182.254,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 70 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions