Solved

Find dydx if y=ln(x6(x2x+4))\frac { d y } { d x } \text { if } y = \ln \left( x ^ { 6 } \left( x ^ { 2 } - x + 4 \right) \right)

Question 11

Multiple Choice

Find dydx if y=ln(x6(x2x+4) ) \frac { d y } { d x } \text { if } y = \ln \left( x ^ { 6 } \left( x ^ { 2 } - x + 4 \right) \right) .


A) 8x27x+24x(x2x+4) \frac { 8 x ^ { 2 } - 7 x + 24 } { x \left( x ^ { 2 } - x + 4 \right) }
B) 8x2+7x24x(x2x+4) \frac { 8 x ^ { 2 } + 7 x - 24 } { x \left( x ^ { 2 } - x + 4 \right) }
C) 8x2+7x+6x(x2x+4) \frac { 8 x ^ { 2 } + 7 x + 6 } { x \left( x ^ { 2 } - x + 4 \right) }
D) 2x27x6x(x2x+4) \frac { 2 x ^ { 2 } - 7 x - 6 } { x \left( x ^ { 2 } - x + 4 \right) }
E) 2x2+7x+24x(x2x+4) \frac { 2 x ^ { 2 } + 7 x + 24 } { x \left( x ^ { 2 } - x + 4 \right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions