Solved

Solve the System of Linear Equations {8x+24y+8z=316x+40y=624x+8y16z=3\left\{ \begin{array} { l l } - 8 x + 24 y + 8 z & = 3 \\16 x + 40 y & = 6 \\24 x + 8 y - 16 z & = - 3\end{array} \right.

Question 1

Multiple Choice

Solve the system of linear equations {8x+24y+8z=316x+40y=624x+8y16z=3\left\{ \begin{array} { l l } - 8 x + 24 y + 8 z & = 3 \\16 x + 40 y & = 6 \\24 x + 8 y - 16 z & = - 3\end{array} \right. using an inverse matrix.


A) [xyz]=[38098]\left[ \begin{array} { c } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } - \frac { 3 } { 8 } \\0 \\\frac { 9 } { 8 }\end{array} \right]
B) [xyz]=[034 38]\left[ \begin{array} { c } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } 0 \\\frac { 3 } { 4 } \\~- \frac { 3 } { 8 }\end{array} \right]
C) [xyz]=[389834]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 3 } { 8 } \\\\- \frac { 9 } { 8 } \\\\\frac { 3 } { 4 }\end{array} \right]
D) [xyz]=[38034]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } \frac { 3 } { 8 } \\0 \\\frac { 3 } { 4 }\end{array} \right]
E) [xyz]=[389834]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { r } - \frac { 3 } { 8 } \\\\- \frac { 9 } { 8 } \\\\- \frac { 3 } { 4 }\end{array} \right]

Correct Answer:

verifed

Verified

Related Questions