Solved

Find the Minimum and Maximum Values of the Objective Function z=3x+4yz = 3 x + 4 y

Question 50

Multiple Choice

Find the minimum and maximum values of the objective function and where they occur, subject to the indicated constraints. Objective function: z=3x+4yz = 3 x + 4 y Constraints: {y0xy22x+3y65x+2y25\left\{ \begin{array} { l } y \geq 0 \\x - y \geq - 2 \\2 x + 3 y \geq 6 \\5 x + 2 y \leq 25\end{array} \right.  Find the minimum and maximum values of the objective function and where they occur, subject to the indicated constraints. Objective function:  z = 3 x + 4 y  Constraints:  \left\{ \begin{array} { l }  y \geq 0 \\ x - y \geq - 2 \\ 2 x + 3 y \geq 6 \\ 5 x + 2 y \leq 25 \end{array} \right.    A)   \text { minimum } = 0 \text { at } ( 0,0 )  ; \text { maximum } = 29 \text { at } ( 3,5 )   B)   \text { minimum } = 9 \text { at } ( 3,0 )  ; \text { maximum } = 15 \text { at } ( 5,0 )   C)   \text { minimum } = 8 \text { at } ( 0,2 )  ; \text { maximum } = 27 \text { at } ( 3,5 )   D)   \text { minimum } = - 11 \text { at } ( 3,5 )  ; \text { maximum } = 15 \text { at } ( 5,0 )   E)   \text { minimum } = 8 \text { at } ( 0,2 )  ; \text { maximum } = 29 \text { at } ( 3,5 )


A)  minimum =0 at (0,0) ; maximum =29 at (3,5) \text { minimum } = 0 \text { at } ( 0,0 ) ; \text { maximum } = 29 \text { at } ( 3,5 )
B)  minimum =9 at (3,0) ; maximum =15 at (5,0) \text { minimum } = 9 \text { at } ( 3,0 ) ; \text { maximum } = 15 \text { at } ( 5,0 )
C)  minimum =8 at (0,2) ; maximum =27 at (3,5) \text { minimum } = 8 \text { at } ( 0,2 ) ; \text { maximum } = 27 \text { at } ( 3,5 )
D)  minimum =11 at (3,5) ; maximum =15 at (5,0) \text { minimum } = - 11 \text { at } ( 3,5 ) ; \text { maximum } = 15 \text { at } ( 5,0 )
E)  minimum =8 at (0,2) ; maximum =29 at (3,5) \text { minimum } = 8 \text { at } ( 0,2 ) ; \text { maximum } = 29 \text { at } ( 3,5 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions