Solved

Find the Inverse Function Informally f(x)=x5f ( x ) = x - 5

Question 44

Multiple Choice

Find the inverse function informally f(x) =x5f ( x ) = x - 5 . Verify that f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x and f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x


A) f1(x) =x+1f ^ { - 1 } ( x ) = x + 1 , f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x
B) f1(x) =x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x
C) f1(x) =x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x) ) =x1f ^ { - 1 } ( f ( x ) ) = x - 1
D) f1(x) =x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x) ) =x+1f \left( f ^ { - 1 } ( x ) \right) = x + 1 , f1(f(x) ) =xf ^ { - 1 } ( f ( x ) ) = x
E) f1(x) =x+5f ^ { - 1 } ( x ) = x + 5 , f(f1(x) ) =xf \left( f ^ { - 1 } ( x ) \right) = x , f1(f(x) ) =x1f ^ { - 1 } ( f ( x ) ) = x ^ { - 1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions