Solved

Solve the Inequality 3x+4+2<9| 3 x + 4 | + 2 < 9

Question 172

Multiple Choice

Solve the inequality. Graph the solution set and write it using interval notation. 3x+4+2<9| 3 x + 4 | + 2 < 9


A) x(5,) x \in ( - 5 , \infty ) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 3 x + 4 | + 2 < 9  A)   x \in ( - 5 , \infty )  ;   B)   x \in ( - 5,1 )  ;   C)   x \in \left( - \infty , - \frac { 11 } { 3 } \right)  \cup ( 1 , \infty )  ;   D)   x \in \left( - \frac { 11 } { 3 } , 1 \right)  ;   E)  no solution;
B) x(5,1) x \in ( - 5,1 ) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 3 x + 4 | + 2 < 9  A)   x \in ( - 5 , \infty )  ;   B)   x \in ( - 5,1 )  ;   C)   x \in \left( - \infty , - \frac { 11 } { 3 } \right)  \cup ( 1 , \infty )  ;   D)   x \in \left( - \frac { 11 } { 3 } , 1 \right)  ;   E)  no solution;
C) x(,113) (1,) x \in \left( - \infty , - \frac { 11 } { 3 } \right) \cup ( 1 , \infty ) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 3 x + 4 | + 2 < 9  A)   x \in ( - 5 , \infty )  ;   B)   x \in ( - 5,1 )  ;   C)   x \in \left( - \infty , - \frac { 11 } { 3 } \right)  \cup ( 1 , \infty )  ;   D)   x \in \left( - \frac { 11 } { 3 } , 1 \right)  ;   E)  no solution;
D) x(113,1) x \in \left( - \frac { 11 } { 3 } , 1 \right) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 3 x + 4 | + 2 < 9  A)   x \in ( - 5 , \infty )  ;   B)   x \in ( - 5,1 )  ;   C)   x \in \left( - \infty , - \frac { 11 } { 3 } \right)  \cup ( 1 , \infty )  ;   D)   x \in \left( - \frac { 11 } { 3 } , 1 \right)  ;   E)  no solution;
E) no solution;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 3 x + 4 | + 2 < 9  A)   x \in ( - 5 , \infty )  ;   B)   x \in ( - 5,1 )  ;   C)   x \in \left( - \infty , - \frac { 11 } { 3 } \right)  \cup ( 1 , \infty )  ;   D)   x \in \left( - \frac { 11 } { 3 } , 1 \right)  ;   E)  no solution;

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions