Solved

Use the Formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } }

Question 7

Multiple Choice

Use the formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } } . Given C=1.65×106FC = 1.65 \times 10 ^ { - 6 } F , C1=8.25×106FC _ { 1 } = 8.25 \times 10 ^ { - 6 } F and C2=6.55×106 FC _ { 2 } = 6.55 \times 10 ^ { - 6 } \mathrm {~F} . Find C3C _ { 3 } .


A) C3=2.41×106FC _ { 3 } = 2.41 \times 10 ^ { - 6 } \quad F
B) C3=3.91×106FC _ { 3 } = 3.91 \times 10 ^ { - 6 } \quad F
C) C3=3.01×106FC _ { 3 } = 3.01 \times 10 ^ { - 6 } \quad F
D) C3=2.71×106FC _ { 3 } = 2.71 \times 10 ^ { - 6 } \quad F
E) C3=2.51×106FC _ { 3 } = 2.51 \times 10 ^ { - 6 } \quad F

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions