Solved

Use the Formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } }

Question 9

Multiple Choice

Use the formula 1C=1C1+1C2+1C3\frac { 1 } { C } = \frac { 1 } { C _ { 1 } } + \frac { 1 } { C _ { 2 } } + \frac { 1 } { C _ { 3 } } . Given C=1.75×1012 FC = 1.75 \times 10 ^ { - 12 } \mathrm {~F} , C2=8.45×1012 FC _ { 2 } = 8.45 \times 10 ^ { - 12 } \mathrm {~F} and C3=6.35×1012 FC _ { 3 } = 6.35 \times 10 ^ { - 12 } \mathrm {~F} Find C1C _ { 1 } .


A) C1=2.78×1012FC _ { 1 } = 2.78 \times 10 ^ { - 12 } \quad F
B) C1=2.88×1012FC _ { 1 } = 2.88 \times 10 ^ { - 12 } \quad F
C) C1=4.28×1012FC _ { 1 } = 4.28 \times 10 ^ { - 12 } \quad F
D) C1=3.68×1012FC _ { 1 } = 3.68 \times 10 ^ { - 12 } \quad F
E) C1=3.38×1012FC _ { 1 } = 3.38 \times 10 ^ { - 12 } \quad F

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions