Solved

Which Statement(s)verify That f(x)=x+47f ( x ) = \sqrt [ 7 ] { x + 4 }

Question 25

Multiple Choice

Which statement(s) verify that f(x) =x+47f ( x ) = \sqrt [ 7 ] { x + 4 } and g(x) =x24g ( x ) = x ^ { 2 } - 4 are inverse?


A) f(g(x) ) =x74+47=x;g(f(x) ) =(x7) 7+44=xf ( g ( x ) ) = \sqrt [ 7 ] { x ^ { 7 } - 4 + 4 } = x ; g ( f ( x ) ) = ( \sqrt [ 7 ] { x } ) ^ { 7 } + 4 - 4 = x
B) f(x) g(x) =x+47(x74) =xf ( x ) \cdot g ( x ) = \sqrt [ 7 ] { x + 4 } \cdot \left( x ^ { 7 } - 4 \right) = x
C) f(g(x) ) =x774+4=x;g(f(x) ) =(x+47) 74=xf ( g ( x ) ) = \sqrt [ 7 ] { x ^ { 7 } } - 4 + 4 = x ; g ( f ( x ) ) = ( \sqrt [ 7 ] { x + 4 } ) ^ { 7 } - 4 = x
D) f(g(x) ) =x74+47=x;g(f(x) ) =(x+47) 74=xf ( g ( x ) ) = \sqrt [ 7 ] { x ^ { 7 } - 4 + 4 } = x ; g ( f ( x ) ) = ( \sqrt [ 7 ] { x + 4 } ) ^ { 7 } - 4 = x
E) f(x) g(x) =x+47x7b=1\frac { f ( x ) } { g ( x ) } = \frac { \sqrt [ 7 ] { x + 4 } } { x ^ { 7 } - b } = - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions