Solved

Let x(t)=t31+t,y(t)=11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t }

Question 78

Multiple Choice

Let x(t) =t31+t,y(t) =11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is


A) t22t+3- \frac { t ^ { 2 } } { 2 t + 3 }
B) 1t2(2t+3) - \frac { 1 } { t ^ { 2 } ( 2 t + 3 ) }
C) -1
D) 1t2(2t+3) \frac { 1 } { t ^ { 2 } ( 2 \mathrm { t } + 3 ) }
E) t22t+3- \frac { t ^ { 2 } } { 2 \mathrm { t } + 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions