Solved

The Area of the Surface Generated by Revolving the Curve x(t)=t,y(t)=t2x ( t ) = t , \quad y ( t ) = t ^ { 2 }

Question 77

Multiple Choice

The area of the surface generated by revolving the curve x(t) =t,y(t) =t2x ( t ) = t , \quad y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is


A) π(17171) 2\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 2 }
B) π(1717+1) 3\frac { \pi ( 17 \sqrt { 17 } + 1 ) } { 3 }
C) π(17171) 3\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 3 }
D) π(1717+1) 6\frac { \pi ( 17 \sqrt { 17 } + 1 ) } { 6 }
E) π(17171) 6\frac { \pi ( 17 \sqrt { 17 } - 1 ) } { 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions