Solved

The Polar Equation That Corresponds to the Rectangular Equation x2y2=4x ^ { 2 } - y ^ { 2 } = 4

Question 95

Multiple Choice

The polar equation that corresponds to the rectangular equation x2y2=4x ^ { 2 } - y ^ { 2 } = 4 is


A) r2=42cos2θ+sin2θr ^ { 2 } = - \frac { 4 } { 2 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }
B) r2=4cos2θ2sin2θr ^ { 2 } = \frac { 4 } { \cos ^ { 2 } \theta - 2 \sin ^ { 2 } \theta }
C) r2=42cos2θ+sin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }
D) r2=4cos2θsin2θr ^ { 2 } = \frac { 4 } { \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }
E) r2=42cos2θsin2θr ^ { 2 } = \frac { 4 } { 2 \cos ^ { 2 } \theta - \sin ^ { 2 } \theta }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions