Solved

Let V Be the Volume of the Solid That Lies y=x28y = \frac { x ^ { 2 } } { 8 }

Question 44

Multiple Choice

Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are equilateral triangles with bases in the xy-plane. Then V is


A) 72335\frac { 72 \sqrt { 3 } } { 35 }
B) 36333\frac { 36 \sqrt { 3 } } { 33 }
C) 18333\frac { 18 \sqrt { 3 } } { 33 }
D) 18335\frac { 18 \sqrt { 3 } } { 35 }
E) 12335\frac { 12 \sqrt { 3 } } { 35 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions