Solved

Let V Be the Volume of the Solid That Lies y=x29y = \frac { x ^ { 2 } } { 9 }

Question 27

Multiple Choice

Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are equilateral triangles with bases in the xy-plane. Then V is


A) 273280\frac { 27 \sqrt { 3 } } { 280 }
B) 273140\frac { 27 \sqrt { 3 } } { 140 }
C) 27370\frac { 27 \sqrt { 3 } } { 70 }
D) 27335\frac { 27 \sqrt { 3 } } { 35 }
E) 273350\frac { 27 \sqrt { 3 } } { 350 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions