Solved

Let a Denote the Area Enclosed by the Graph f(x)=x3,f ( x ) = \frac { \sqrt { x } } { 3 },

Question 128

Multiple Choice

Let A denote the area enclosed by the graph f(x) =x3,f ( x ) = \frac { \sqrt { x } } { 3 }, the x-axis, and the lines x = 0 and x = 9. Graphing the region and using plane geometry, we can find that A is


A) limnk=1n3nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 3 } { n } \sqrt { \frac { k - 1 } { n } }
B) limnk=1n27nkn\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 27 } { n } \sqrt { \frac { k } { n } }
C) limnk=1n3nkn\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 3 } { n } \sqrt { \frac { k } { n } }
D) limnk=1n9nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 9 } { n } \sqrt { \frac { k - 1 } { n } }
E) limnk=1n27nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 27 } { n } \sqrt { \frac { k - 1 } { n } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions