Solved

The Particular Solution of the Differential Equation dydx=5x2+2\frac { d y } { d x } = 5 x ^ { 2 } + 2

Question 159

Multiple Choice

The particular solution of the differential equation dydx=5x2+2\frac { d y } { d x } = 5 x ^ { 2 } + 2 satisfying the boundary condition when x = 3, y = 5 is


A) y=53x3+2x5y = \frac { 5 } { 3 } x ^ { 3 } + 2 x - 5
B) y=53x3+2x3y = \frac { 5 } { 3 } x ^ { 3 } + 2 x - 3
C) y=53x3+2x51y = \frac { 5 } { 3 } x ^ { 3 } + 2 x - 51
D) y=53x3+2x46y = \frac { 5 } { 3 } x ^ { 3 } + 2 x - 46
E) y=53x3+2x45y = \frac { 5 } { 3 } x ^ { 3 } + 2 x - 45

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions