Solved

The Particular Solution of the Differential Equation dydx=x2+2x+1\frac { d y } { d x } = x ^ { 2 } + 2 x + 1

Question 162

Multiple Choice

The particular solution of the differential equation dydx=x2+2x+1\frac { d y } { d x } = x ^ { 2 } + 2 x + 1 satisfying the boundary condition when x = 3, y = -1 is


A) y=13x3+x2+x3y = \frac { 1 } { 3 } x ^ { 3 } + x ^ { 2 } + x - 3
B) y=13x3+x2+x+1y = \frac { 1 } { 3 } x ^ { 3 } + x ^ { 2 } + x + 1
C) y=13x3+x2+x22y = \frac { 1 } { 3 } x ^ { 3 } + x ^ { 2 } + x - 22
D) y=13x3+x2+x21y = \frac { 1 } { 3 } x ^ { 3 } + x ^ { 2 } + x - 21
E) y=13x3+x2+x23y = \frac { 1 } { 3 } x ^ { 3 } + x ^ { 2 } + x - 23

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions