Solved

The Particular Solution of the Differential Equation d2sdt2=8t3\frac { d ^ { 2 } s } { d t ^ { 2 } } = 8 t - 3

Question 88

Multiple Choice

The particular solution of the differential equation d2sdt2=8t3\frac { d ^ { 2 } s } { d t ^ { 2 } } = 8 t - 3 satisfying the initial conditions dsdtx=0=4\left. \frac { d s } { d t } \right| _ { x = 0 } = 4 and s(0) =1s ( 0 ) = 1 is


A) s=43t332t2+4t+1s = \frac { 4 } { 3 } t ^ { 3 } - \frac { 3 } { 2 } t ^ { 2 } + 4 t + 1
B) s=43t3+32t24t+1s = \frac { 4 } { 3 } t ^ { 3 } + \frac { 3 } { 2 } t ^ { 2 } - 4 t + 1
C) s=43t332t24t+1s = \frac { 4 } { 3 } t ^ { 3 } - \frac { 3 } { 2 } t ^ { 2 } - 4 t + 1
D) s=43t332t2+4t1s = \frac { 4 } { 3 } t ^ { 3 } - \frac { 3 } { 2 } t ^ { 2 } + 4 t - 1
E) s=43t3+32t2+4t+1s = \frac { 4 } { 3 } t ^ { 3 } + \frac { 3 } { 2 } t ^ { 2 } + 4 t + 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions