Solved

The Particular Solution of the Differential Equation d2ydx2=12x2\frac { d ^ { 2 } y } { d x ^ { 2 } } = 12 x ^ { 2 }

Question 87

Multiple Choice

The particular solution of the differential equation d2ydx2=12x2\frac { d ^ { 2 } y } { d x ^ { 2 } } = 12 x ^ { 2 } satisfying the boundary conditions when x = 0, y = 1 and x = 3, y' = 8 is


A) y=x483x+1y = x ^ { 4 } - \frac { 8 } { 3 } x + 1
B) y=x413x+1y = x ^ { 4 } - \frac { 1 } { 3 } x + 1
C) y=x4743x+1y = x ^ { 4 } - \frac { 74 } { 3 } x + 1
D) y=x4+83x+1y = x ^ { 4 } + \frac { 8 } { 3 } x + 1
E) y=x4+743x+1y = x ^ { 4 } + \frac { 74 } { 3 } x + 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions