Solved

Let y=sinu+cosuy = \sin u + \cos u And u=4x2+5u = 4 x ^ { 2 } + 5

Question 38

Multiple Choice

Let y=sinu+cosuy = \sin u + \cos u and u=4x2+5u = 4 x ^ { 2 } + 5 By the Chain Rule, dydx\frac { d y } { d x } is


A) cos(8x) sin(8x) \cos ( 8 x ) - \sin ( 8 x )
B) cos(8x) +sin(8x) \cos ( 8 x ) + \sin ( 8 x )
C) cos(4x2+5) sin(4x2+5) \cos \left( 4 x ^ { 2 } + 5 \right) - \sin \left( 4 x ^ { 2 } + 5 \right)
D) cos(4x2+5) +sin(4x2+5) \cos \left( 4 x ^ { 2 } + 5 \right) + \sin \left( 4 x ^ { 2 } + 5 \right)
E) 8x[cos(4x2+5) sin(4x2+5) ]8 x \left[ \cos \left( 4 x ^ { 2 } + 5 \right) - \sin \left( 4 x ^ { 2 } + 5 \right) \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions