Solved

The Outer Unit Normal Vector To x+y+z=1x + y + z = 1

Question 12

Multiple Choice

The outer unit normal vector to x+y+z=1x + y + z = 1 is


A) 13i+13j+13k\frac { 1 } { \sqrt { 3 } } \mathbf { i } + \frac { 1 } { \sqrt { 3 } } \mathbf { j } + \frac { 1 } { \sqrt { 3 } } \mathbf { k }
B) 13i13j+13k\frac { 1 } { \sqrt { 3 } } \mathbf { i } - \frac { 1 } { \sqrt { 3 } } \mathbf { j } + \frac { 1 } { \sqrt { 3 } } \mathbf { k }
C) 13i+13j13k\frac { 1 } { \sqrt { 3 } } \mathbf { i } + \frac { 1 } { \sqrt { 3 } } \mathbf { j } - \frac { 1 } { \sqrt { 3 } } \mathbf { k }
D) 13i13j13k\frac { 1 } { \sqrt { 3 } } \mathbf { i } - \frac { 1 } { \sqrt { 3 } } \mathbf { j } - \frac { 1 } { \sqrt { 3 } } \mathbf { k }
E) 13i+13j+13k- \frac { 1 } { \sqrt { 3 } } \mathbf { i } + \frac { 1 } { \sqrt { 3 } } \mathbf { j } + \frac { 1 } { \sqrt { 3 } } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions