Solved

Let I=33[09x2(x2+y2)dy]dxI = \int _ { - 3 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x

Question 105

Multiple Choice

Let I=33[09x2(x2+y2) dy]dxI = \int _ { - 3 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is


A) 0π[03r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } d r \right] d \theta
B) 0π[03r3dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
C) 0π2[03r3dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
D) 0π2[03r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } d r \right] d \theta
E) π2π[03r3dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions