Solved

The Center of Mass of a Lamina in the Shape x2+y2=1,x0,y0x ^ { 2 } + y ^ { 2 } = 1 , x \geq 0 , y \geq 0

Question 109

Multiple Choice

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x2+y2=1,x0,y0x ^ { 2 } + y ^ { 2 } = 1 , x \geq 0 , y \geq 0 with area density ρ(x,y) =x+y\rho ( x , y ) = x + y is


A) (3(2+π) 16,3(2+π) 32) \left( \frac { 3 ( 2 + \pi ) } { 16 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
B) (3(2π) 32,3(2π) 32) \left( \frac { 3 ( 2 - \pi ) } { 32 } , \frac { 3 ( 2 - \pi ) } { 32 } \right)
C) (3(2+π) 32,3(2+π) 32) \left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
D) (3(2+π) 32,3(2π) 32) \left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 - \pi ) } { 32 } \right)
E) (3(2π) 32,3(2+π) 32) \left( \frac { 3 ( 2 - \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions