Solved

The Center of Mass of a Lamina in the Shape r=2+cos(θ),0θπr = 2 + \cos ( \theta ) , 0 \leq \theta \leq \pi

Question 144

Multiple Choice

The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2+cos(θ) ,0θπr = 2 + \cos ( \theta ) , 0 \leq \theta \leq \pi and the polar axis with area density ρ(r,θ) =sinθ\rho ( r , \theta ) = \sin \theta is


A) (1528,58) \left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110) \left( 0 , \frac { 21 } { 10 } \right)
C) (5744,0) \left( - \frac { 57 } { 44 } , 0 \right)
D) (4265,19π52) \left( \frac { 42 } { 65 } , \frac { 19 \pi } { 52 } \right)
E) (85,85) \left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions