Solved

The Solution r(t)\mathbf { r } ( t ) To the Differential Equation

Question 46

Multiple Choice

The solution r(t) \mathbf { r } ( t ) to the differential equation r(t) =3t2i1t3j+4k\mathbf { r } ^ { \prime } ( t ) = 3 t ^ { 2 } \mathbf { i } - \frac { 1 } { t - 3 } \mathbf { j } + 4 \mathbf { k } with the condition r(4) =ij+3k\mathbf { r } ( 4 ) = \mathbf { i } - \mathbf { j } + 3 \mathbf { k } is


A) (t363) i(lnt3+1) j+(4t13) k- \left( t ^ { 3 } - 63 \right) \mathbf { i } - ( \ln | t - 3 | + 1 ) \mathbf { j } + ( 4 t - 13 ) \mathbf { k }
B) (t363) i+(lnt3+1) j(4t13) k\left( t ^ { 3 } - 63 \right) \mathbf { i } + ( \ln | t - 3 | + 1 ) \mathbf { j } - ( 4 t - 13 ) \mathbf { k }
C) (t363) i(lnt3+1) j(4t13) k\left( t ^ { 3 } - 63 \right) \mathbf { i } - ( \ln | t - 3 | + 1 ) \mathbf { j } - ( 4 t - 13 ) \mathbf { k }
D) (t363) i(lnt3+1) j+(4t13) k\left( t ^ { 3 } - 63 \right) \mathbf { i } - ( \ln | t - 3 | + 1 ) \mathbf { j } + ( 4 t - 13 ) \mathbf { k }
E) (t363) i+(lnt3+1) j+(4t13) k\left( t ^ { 3 } - 63 \right) \mathbf { i } + ( \ln | t - 3 | + 1 ) \mathbf { j } + ( 4 t - 13 ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions