Solved

Let a(t)=costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j }

Question 83

Multiple Choice

Let a(t) =costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } be the acceleration of an object with velocity v(t) \mathbf { v } ( t ) . If v(0) =i+j\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } then the speed v(t) \| \mathbf { v } ( t ) \| is


A) (sint+2) 2+(cost1) 2\sqrt { ( \sin t + 2 ) ^ { 2 } + ( \cos t - 1 ) ^ { 2 } }
B) (sint1) 2+(cost+2) 2\sqrt { ( \sin t - 1 ) ^ { 2 } + ( \cos t + 2 ) ^ { 2 } }
C) (sint+1) 2+(cost+2) 2\sqrt { ( \sin t + 1 ) ^ { 2 } + ( \cos t + 2 ) ^ { 2 } }
D) (sint1) 2+(cost2) 2\sqrt { ( \sin t - 1 ) ^ { 2 } + ( \cos t - 2 ) ^ { 2 } }
E) (sint+1) 2+(cost2) 2\sqrt { ( \sin t + 1 ) ^ { 2 } + ( \cos t - 2 ) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions